// Package heap provides heap operations for any type that implements // heap.Interface. A heap is a tree with the property that each node is the // minimum-valued node in its subtree. // // The minimum element in the tree is the root, at index 0. // // A heap is a common way to implement a priority queue. To build a priority // queue, implement the Heap interface with the (negative) priority as the // ordering for the Less method, so Push adds items while Pop removes the // highest-priority item from the queue. The Examples include such an // implementation; the file example_pq_test.go has the complete source. // package tinykv type tohVal = *timeout // Any type that implements heap.Interface may be used as a // min-heap with the following invariants (established after // Init has been called or if the data is empty or sorted): // // !h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len() // // Note that Push and Pop in this interface are for package heap's // implementation to call. To add and remove things from the heap, // use heap.Push and heap.Pop. type timeheapInterface interface { Len() int Less(i, j int) bool Swap(i, j int) Push(x tohVal) // add x as element Len() Pop() tohVal // remove and return element Len() - 1. } // Push pushes the element x onto the heap. The complexity is // O(log(n)) where n = h.Len(). func timeheapPush(h timeheapInterface, x tohVal) { h.Push(x) timeheapup(h, h.Len()-1) } // Pop removes the minimum element (according to Less) from the heap // and returns it. The complexity is O(log(n)) where n = h.Len(). // It is equivalent to Remove(h, 0). func timeheapPop(h timeheapInterface) tohVal { n := h.Len() - 1 h.Swap(0, n) timeheapdown(h, 0, n) return h.Pop() } func timeheapup(h timeheapInterface, j int) { for { i := (j - 1) / 2 // parent if i == j || !h.Less(j, i) { break } h.Swap(i, j) j = i } } func timeheapdown(h timeheapInterface, i0, n int) bool { i := i0 for { j1 := 2*i + 1 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow break } j := j1 // left child if j2 := j1 + 1; j2 < n && h.Less(j2, j1) { j = j2 // = 2*i + 2 // right child } if !h.Less(j, i) { break } h.Swap(i, j) i = j } return i > i0 }