Files
esp32-geiger-counter/ESP32GeigerCounter.ino

204 lines
5.2 KiB
C++

#include "Arduino.h"
#include "driver/pcnt.h"
#include "driver/gpio.h"
#include "driver/rtc_io.h"
#include "display.h"
#include "ingest.h"
#include "GeigerData.h"
// ~400µs high pulses from Geiger tube on GPIO 18
#define PULSE_PIN 18
#define PULSE_GPIO GPIO_NUM_18
// switch input for WiFi on (low) and off (high)
#define WIFI_SWITCH_PIN 4
// Keep 600 samples of 1s in history (10 minutes),
// calculate radiation for russian STS-6 ("CTC-6") Geiger tube
GeigerData geigerData(600, 1, STS6_CPM_PER_USPH);
// blinky state
int blinky = 1;
// Pulses counted by interrupt (while CPU is awake)
volatile uint16_t intPulseCount = 0;
// Pulses counted during ESP light sleep
volatile uint16_t pulseCount = 0;
// Sample duration in µs
const uint32_t sampleMicros = geigerData.sampleSeconds * 1000000;
// Absolute sample interval start micros
uint32_t sampleStart = 0;
const int16_t ingestInterval = 60;
int16_t ingestCountdown;
void setup() {
Serial.begin(921600);
Serial.println("Starting!");
// OLED
initDisplay();
// blinky
pinMode(LED_BUILTIN, OUTPUT);
// Geiger pulse input
pinMode(PULSE_PIN, INPUT);
// WiFi switch input
pinMode(WIFI_SWITCH_PIN, INPUT_PULLUP);
if (wifiSwitchOn()) {
initIngest();
}
// initialize sample start
sampleStart = micros();
ingestCountdown = ingestInterval;
}
// interrupt handler
void pulse() {
++intPulseCount;
}
uint32_t calcRemainingWait() {
const uint32_t remaining = sampleMicros - (micros() - sampleStart);
return remaining > sampleMicros ? 0 : remaining;
}
boolean wifiSwitchOn() {
return digitalRead(WIFI_SWITCH_PIN) == 0;
}
uint16_t takeSampleNoSleep() {
attachInterrupt(PULSE_PIN, pulse, RISING);
int32_t remainingWait = calcRemainingWait();
delayMicroseconds(remainingWait);
sampleStart = micros();
noInterrupts();
const int16_t pulses = intPulseCount;
intPulseCount = 0;
interrupts();
return pulses;
}
uint16_t takeSampleLowPower() {
// To save battery power, use light sleep as much as possible.
// During light sleep, no counters or interrupts are working.
// Therefore simply wake up on each pulse signal change. This
// is fast enough for the low frequencies from a Geiger tube
// (below 2kHz):
// Wake up at end of sample period. Also
// wake up on pulse getting high and getting low.
// Waking up directly on rising/falling edges is not possible,
// so wait until level change.
// Switch to interrupt counting while awake for calculations
// and display update.
// stop interrupt (switch to active wakeup counting loop):
detachInterrupt(PULSE_PIN);
int32_t remainingWait = calcRemainingWait();
esp_sleep_wakeup_cause_t cause = ESP_SLEEP_WAKEUP_UNDEFINED;
while (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
if (digitalRead(PULSE_PIN)) {
// wait for low pulse start or sample time end
esp_sleep_enable_timer_wakeup(remainingWait);
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_LOW_LEVEL);
esp_sleep_enable_gpio_wakeup();
esp_light_sleep_start();
cause = esp_sleep_get_wakeup_cause();
}
remainingWait = calcRemainingWait();
if (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
// wait for high pulse start or sample time end
esp_sleep_enable_timer_wakeup(remainingWait);
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_HIGH_LEVEL);
esp_sleep_enable_gpio_wakeup();
esp_light_sleep_start();
cause = esp_sleep_get_wakeup_cause();
if (cause == ESP_SLEEP_WAKEUP_GPIO) {
++pulseCount;
}
}
remainingWait = calcRemainingWait();
}
// take sample and add to statistics
sampleStart = micros();
const int16_t pulses = pulseCount + intPulseCount;
// Serial.print("pc=");
// Serial.print(pulseCount);
// Serial.print(" ipc=");
// Serial.println(intPulseCount);
attachInterrupt(PULSE_PIN, pulse, RISING);
interrupts();
// reset counters AFTER enabling interrupt to avoid double-counting on high signal
pulseCount = 0;
intPulseCount = 0;
return pulses;
}
void loop() {
// blinky
digitalWrite(LED_BUILTIN, blinky);
blinky = !blinky;
const uint16_t pulses =
wifiSwitchOn() ? takeSampleNoSleep() : takeSampleLowPower();
geigerData.addPulses(pulses);
geigerData.nextSample();
if (wifiSwitchOn()) {
ingestCountdown--;
if (ingestCountdown <= 0) {
ingestCountdown = ingestInterval;
ingest(geigerData, ingestInterval);
}
} else {
deinitIngest();
}
// determine current value, average 6 seconds
// because this is very near to the 5 seconds history
// bar width and gives nicely rounded count values
const uint16_t samples = 6;
const uint32_t prevPulses = geigerData.getPreviousPulses(1, samples);
const uint32_t cpm = prevPulses * (60 / samples);
const float uSph = geigerData.toMicroSievertPerHour(prevPulses, samples);
// test for display layout:
// const uint32_t cpm = 1000*60;
// const float uSph = geigerData.toMicroSievertPerHour(cpm, 60);
char cpmStr[16];
ltoa(cpm, cpmStr, 10);
char uSphStr[16];
sprintf(uSphStr, "%.2f", uSph);
// serial output cpm and µS/h
Serial.print(pulses);
Serial.print(" ");
Serial.print(cpmStr);
Serial.print(" ");
Serial.println(uSphStr);
updateDisplay(geigerData, uSphStr, cpmStr);
}