mirror of
https://github.com/grillbaer/esp32-geiger-counter.git
synced 2025-12-21 21:33:03 +01:00
234 lines
6.5 KiB
C++
234 lines
6.5 KiB
C++
#include "Arduino.h"
|
|
#include "U8g2lib.h"
|
|
|
|
#include "driver/pcnt.h"
|
|
#include "driver/gpio.h"
|
|
#include "driver/rtc_io.h"
|
|
|
|
#include "GeigerData.h"
|
|
|
|
// ~400µs high pulses from Geiger tube on GPIO 18
|
|
#define PULSE_PIN 18
|
|
#define PULSE_GPIO GPIO_NUM_18
|
|
|
|
// OLED display 128x64 with SH1106 controller
|
|
// on I2C GPIOs SCL 22 and SDA 21
|
|
U8G2_SH1106_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, 22, 21);
|
|
|
|
// Keep 600 samples of 1s in history (10 minutes),
|
|
// calculate radiation for russian STS-6 ("CTC-6") Geiger tube
|
|
GeigerData geigerData(600, 1, STS6_CPM_PER_USPH);
|
|
|
|
// blinky state
|
|
int blinky = 1;
|
|
|
|
// Pulses counted by interrupt (while CPU is awake)
|
|
volatile uint16_t intPulseCount = 0;
|
|
// Pulses counted during ESP light sleep
|
|
volatile uint16_t pulseCount = 0;
|
|
|
|
// Sample duration in µs
|
|
const uint32_t sampleMicros = geigerData.sampleSeconds * 1000000;
|
|
// Absolute sample interval start micros
|
|
uint32_t sampleStart = 0;
|
|
|
|
void setup() {
|
|
Serial.begin(921600);
|
|
|
|
// high I2c clock still results in about 100ms buffer transmission to OLED:
|
|
u8g2.setBusClock(1000000);
|
|
u8g2.begin();
|
|
|
|
// blinky
|
|
pinMode(LED_BUILTIN, OUTPUT);
|
|
|
|
// Geiger pulse input
|
|
pinMode(PULSE_PIN, INPUT);
|
|
|
|
// initialize sample start
|
|
sampleStart = micros();
|
|
}
|
|
|
|
// interrupt handler
|
|
void pulse() {
|
|
++intPulseCount;
|
|
}
|
|
|
|
uint32_t calcRemainingWait() {
|
|
return sampleMicros - (micros() - sampleStart);
|
|
}
|
|
|
|
void loop() {
|
|
|
|
// blinky
|
|
|
|
digitalWrite(LED_BUILTIN, blinky);
|
|
blinky = !blinky;
|
|
|
|
// To save battery power, use light sleep as much as possible.
|
|
// During light sleep, no counters or interrupts are working.
|
|
// Therefore simply wake up on each pulse signal change. This
|
|
// is fast enough for the low frequencies from a Geiger tube
|
|
// (below 2kHz):
|
|
// Wake up at end of sample period. Also
|
|
// wake up on pulse getting high and getting low.
|
|
// Waking up directly on rising/falling edges is not possible,
|
|
// so wait until level change.
|
|
// Switch to interrupt counting while awake for calculations
|
|
// and display update.
|
|
|
|
// stop interrupt (switch to active wakeup counting loop):
|
|
detachInterrupt(PULSE_PIN);
|
|
|
|
int32_t remainingWait = calcRemainingWait();
|
|
esp_sleep_wakeup_cause_t cause = ESP_SLEEP_WAKEUP_UNDEFINED;
|
|
while (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
|
|
|
|
if (digitalRead(PULSE_PIN)) {
|
|
// wait for low pulse start or sample time end
|
|
esp_sleep_enable_timer_wakeup(remainingWait);
|
|
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_LOW_LEVEL);
|
|
esp_sleep_enable_gpio_wakeup();
|
|
esp_light_sleep_start();
|
|
cause = esp_sleep_get_wakeup_cause();
|
|
}
|
|
|
|
remainingWait = calcRemainingWait();
|
|
if (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
|
|
// wait for high pulse start or sample time end
|
|
esp_sleep_enable_timer_wakeup(remainingWait);
|
|
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_HIGH_LEVEL);
|
|
esp_sleep_enable_gpio_wakeup();
|
|
esp_light_sleep_start();
|
|
cause = esp_sleep_get_wakeup_cause();
|
|
if (cause == ESP_SLEEP_WAKEUP_GPIO) {
|
|
++pulseCount;
|
|
}
|
|
}
|
|
|
|
remainingWait = calcRemainingWait();
|
|
}
|
|
|
|
// take sample and add to statistics
|
|
|
|
sampleStart = micros();
|
|
const int16_t pulses = pulseCount + intPulseCount;
|
|
// Serial.print("pc=");
|
|
// Serial.print(pulseCount);
|
|
// Serial.print(" ipc=");
|
|
// Serial.println(intPulseCount);
|
|
attachInterrupt(PULSE_PIN, pulse, RISING);
|
|
interrupts();
|
|
// reset counters AFTER enabling interrupt to avoid double-counting on high signal
|
|
pulseCount = 0;
|
|
intPulseCount = 0;
|
|
|
|
geigerData.addPulses(pulses);
|
|
geigerData.nextSample();
|
|
|
|
// determine current value, average 6 seconds
|
|
// because this is very near to the 5 seconds history
|
|
// bar width and gives nicely rounded count values
|
|
|
|
const uint16_t samples = 6;
|
|
const uint32_t prevPulses = geigerData.getPreviousPulses(1, samples);
|
|
const uint32_t cpm = prevPulses * (60 / samples);
|
|
const float uSph = geigerData.toMicroSievertPerHour(prevPulses, samples);
|
|
|
|
// test for display layout:
|
|
// const uint32_t cpm = 1000*60;
|
|
// const float uSph = geigerData.toMicroSievertPerHour(cpm, 60);
|
|
|
|
char cpmStr[16];
|
|
ltoa(cpm, cpmStr, 10);
|
|
char uSphStr[16];
|
|
sprintf(uSphStr, "%.2f", uSph);
|
|
|
|
// serial output cpm and µS/h
|
|
|
|
Serial.print(pulses);
|
|
Serial.print(" ");
|
|
Serial.print(cpmStr);
|
|
Serial.print(" ");
|
|
Serial.println(uSphStr);
|
|
|
|
// render cpm and µS/h displays
|
|
|
|
u8g2.clearBuffer();
|
|
uint16_t y = 14;
|
|
uint16_t xCpm = 56;
|
|
uint16_t xUSph = 127;
|
|
u8g2.setFont(u8g2_font_crox4hb_tr);
|
|
|
|
u8g2_uint_t w = u8g2.getStrWidth(uSphStr);
|
|
u8g2.setCursor(xUSph - w, y);
|
|
u8g2.print(uSphStr);
|
|
|
|
w = u8g2.getStrWidth(cpmStr);
|
|
u8g2.setCursor(xCpm - w, y);
|
|
u8g2.print(cpmStr);
|
|
|
|
y = 21;
|
|
u8g2.setFont(u8g2_font_4x6_tf);
|
|
w = u8g2.getStrWidth("µS/h");
|
|
u8g2.setCursor(xUSph - w, y);
|
|
u8g2.print("µS/h");
|
|
w = u8g2.getStrWidth("cnt/min");
|
|
u8g2.setCursor(xCpm - w, y);
|
|
u8g2.print("cnt/min");
|
|
|
|
// history bar graph
|
|
|
|
const uint16_t bars = 120;
|
|
const uint16_t maxBarHeight = 40;
|
|
const uint16_t samplesPerBar = geigerData.sampleCount / bars;
|
|
const uint16_t barsPerMinute = 60
|
|
/ (samplesPerBar * geigerData.sampleSeconds);
|
|
|
|
// determine max value for y scale:
|
|
uint16_t offset = geigerData.getCurrentSample() % samplesPerBar + 1;
|
|
uint32_t maxPulses = 0;
|
|
for (int16_t i = 0; i < bars - 1; i++) {
|
|
const uint32_t prevPulses = geigerData.getPreviousPulses(offset,
|
|
samplesPerBar);
|
|
if (prevPulses > maxPulses)
|
|
maxPulses = prevPulses;
|
|
offset += samplesPerBar;
|
|
}
|
|
const float maxUSph = geigerData.toMicroSievertPerHour(maxPulses,
|
|
samplesPerBar);
|
|
const float uSphPerPixel = maxUSph > 40. ? 10. : maxUSph > 4. ? 1. :
|
|
maxUSph > 0.4 ? 0.1 : 0.01;
|
|
|
|
// labels and grid
|
|
u8g2.setFont(u8g2_font_4x6_tn);
|
|
char s[10];
|
|
for (uint16_t i = 10; i <= maxBarHeight; i += 10) {
|
|
u8g2.setCursor(0, 63 - i + 3);
|
|
if (uSphPerPixel >= 0.1)
|
|
sprintf(s, "%.0f", i * uSphPerPixel);
|
|
else
|
|
sprintf(s, ".%.0f", i * uSphPerPixel * 10);
|
|
u8g2.print(s);
|
|
for (int16_t x = 127 - barsPerMinute; x >= 8; x -= barsPerMinute) {
|
|
u8g2.drawPixel(x, 63 - i);
|
|
}
|
|
}
|
|
|
|
// bars
|
|
offset = geigerData.getCurrentSample() % samplesPerBar + 1;
|
|
for (int16_t i = 0; i < bars - 1; i++) {
|
|
const uint32_t prevPulses = geigerData.getPreviousPulses(offset,
|
|
samplesPerBar);
|
|
const float uSph = geigerData.toMicroSievertPerHour(prevPulses,
|
|
samplesPerBar);
|
|
offset += samplesPerBar;
|
|
uint16_t barHeight = 1 + (int) (uSph / uSphPerPixel);
|
|
if (barHeight > 40)
|
|
barHeight = 40;
|
|
u8g2.drawVLine(127 - i, 63 - barHeight, barHeight);
|
|
}
|
|
|
|
u8g2.sendBuffer();
|
|
}
|