Files
esp32-geiger-counter/ESP32GeigerCounter.ino
Holger Fleischmann aa000ae1e1 Initial import
2019-04-12 20:52:48 +02:00

234 lines
6.5 KiB
C++

#include "Arduino.h"
#include "U8g2lib.h"
#include "driver/pcnt.h"
#include "driver/gpio.h"
#include "driver/rtc_io.h"
#include "GeigerData.h"
// ~400µs high pulses from Geiger tube on GPIO 18
#define PULSE_PIN 18
#define PULSE_GPIO GPIO_NUM_18
// OLED display 128x64 with SH1106 controller
// on I2C GPIOs SCL 22 and SDA 21
U8G2_SH1106_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, 22, 21);
// Keep 600 samples of 1s in history (10 minutes),
// calculate radiation for russian STS-6 ("CTC-6") Geiger tube
GeigerData geigerData(600, 1, STS6_CPM_PER_USPH);
// blinky state
int blinky = 1;
// Pulses counted by interrupt (while CPU is awake)
volatile uint16_t intPulseCount = 0;
// Pulses counted during ESP light sleep
volatile uint16_t pulseCount = 0;
// Sample duration in µs
const uint32_t sampleMicros = geigerData.sampleSeconds * 1000000;
// Absolute sample interval start micros
uint32_t sampleStart = 0;
void setup() {
Serial.begin(921600);
// high I2c clock still results in about 100ms buffer transmission to OLED:
u8g2.setBusClock(1000000);
u8g2.begin();
// blinky
pinMode(LED_BUILTIN, OUTPUT);
// Geiger pulse input
pinMode(PULSE_PIN, INPUT);
// initialize sample start
sampleStart = micros();
}
// interrupt handler
void pulse() {
++intPulseCount;
}
uint32_t calcRemainingWait() {
return sampleMicros - (micros() - sampleStart);
}
void loop() {
// blinky
digitalWrite(LED_BUILTIN, blinky);
blinky = !blinky;
// To save battery power, use light sleep as much as possible.
// During light sleep, no counters or interrupts are working.
// Therefore simply wake up on each pulse signal change. This
// is fast enough for the low frequencies from a Geiger tube
// (below 2kHz):
// Wake up at end of sample period. Also
// wake up on pulse getting high and getting low.
// Waking up directly on rising/falling edges is not possible,
// so wait until level change.
// Switch to interrupt counting while awake for calculations
// and display update.
// stop interrupt (switch to active wakeup counting loop):
detachInterrupt(PULSE_PIN);
int32_t remainingWait = calcRemainingWait();
esp_sleep_wakeup_cause_t cause = ESP_SLEEP_WAKEUP_UNDEFINED;
while (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
if (digitalRead(PULSE_PIN)) {
// wait for low pulse start or sample time end
esp_sleep_enable_timer_wakeup(remainingWait);
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_LOW_LEVEL);
esp_sleep_enable_gpio_wakeup();
esp_light_sleep_start();
cause = esp_sleep_get_wakeup_cause();
}
remainingWait = calcRemainingWait();
if (cause != ESP_SLEEP_WAKEUP_TIMER && remainingWait > 0) {
// wait for high pulse start or sample time end
esp_sleep_enable_timer_wakeup(remainingWait);
gpio_wakeup_enable(PULSE_GPIO, GPIO_INTR_HIGH_LEVEL);
esp_sleep_enable_gpio_wakeup();
esp_light_sleep_start();
cause = esp_sleep_get_wakeup_cause();
if (cause == ESP_SLEEP_WAKEUP_GPIO) {
++pulseCount;
}
}
remainingWait = calcRemainingWait();
}
// take sample and add to statistics
sampleStart = micros();
const int16_t pulses = pulseCount + intPulseCount;
// Serial.print("pc=");
// Serial.print(pulseCount);
// Serial.print(" ipc=");
// Serial.println(intPulseCount);
attachInterrupt(PULSE_PIN, pulse, RISING);
interrupts();
// reset counters AFTER enabling interrupt to avoid double-counting on high signal
pulseCount = 0;
intPulseCount = 0;
geigerData.addPulses(pulses);
geigerData.nextSample();
// determine current value, average 6 seconds
// because this is very near to the 5 seconds history
// bar width and gives nicely rounded count values
const uint16_t samples = 6;
const uint32_t prevPulses = geigerData.getPreviousPulses(1, samples);
const uint32_t cpm = prevPulses * (60 / samples);
const float uSph = geigerData.toMicroSievertPerHour(prevPulses, samples);
// test for display layout:
// const uint32_t cpm = 1000*60;
// const float uSph = geigerData.toMicroSievertPerHour(cpm, 60);
char cpmStr[16];
ltoa(cpm, cpmStr, 10);
char uSphStr[16];
sprintf(uSphStr, "%.2f", uSph);
// serial output cpm and µS/h
Serial.print(pulses);
Serial.print(" ");
Serial.print(cpmStr);
Serial.print(" ");
Serial.println(uSphStr);
// render cpm and µS/h displays
u8g2.clearBuffer();
uint16_t y = 14;
uint16_t xCpm = 56;
uint16_t xUSph = 127;
u8g2.setFont(u8g2_font_crox4hb_tr);
u8g2_uint_t w = u8g2.getStrWidth(uSphStr);
u8g2.setCursor(xUSph - w, y);
u8g2.print(uSphStr);
w = u8g2.getStrWidth(cpmStr);
u8g2.setCursor(xCpm - w, y);
u8g2.print(cpmStr);
y = 21;
u8g2.setFont(u8g2_font_4x6_tf);
w = u8g2.getStrWidth("µS/h");
u8g2.setCursor(xUSph - w, y);
u8g2.print("µS/h");
w = u8g2.getStrWidth("cnt/min");
u8g2.setCursor(xCpm - w, y);
u8g2.print("cnt/min");
// history bar graph
const uint16_t bars = 120;
const uint16_t maxBarHeight = 40;
const uint16_t samplesPerBar = geigerData.sampleCount / bars;
const uint16_t barsPerMinute = 60
/ (samplesPerBar * geigerData.sampleSeconds);
// determine max value for y scale:
uint16_t offset = geigerData.getCurrentSample() % samplesPerBar + 1;
uint32_t maxPulses = 0;
for (int16_t i = 0; i < bars - 1; i++) {
const uint32_t prevPulses = geigerData.getPreviousPulses(offset,
samplesPerBar);
if (prevPulses > maxPulses)
maxPulses = prevPulses;
offset += samplesPerBar;
}
const float maxUSph = geigerData.toMicroSievertPerHour(maxPulses,
samplesPerBar);
const float uSphPerPixel = maxUSph > 40. ? 10. : maxUSph > 4. ? 1. :
maxUSph > 0.4 ? 0.1 : 0.01;
// labels and grid
u8g2.setFont(u8g2_font_4x6_tn);
char s[10];
for (uint16_t i = 10; i <= maxBarHeight; i += 10) {
u8g2.setCursor(0, 63 - i + 3);
if (uSphPerPixel >= 0.1)
sprintf(s, "%.0f", i * uSphPerPixel);
else
sprintf(s, ".%.0f", i * uSphPerPixel * 10);
u8g2.print(s);
for (int16_t x = 127 - barsPerMinute; x >= 8; x -= barsPerMinute) {
u8g2.drawPixel(x, 63 - i);
}
}
// bars
offset = geigerData.getCurrentSample() % samplesPerBar + 1;
for (int16_t i = 0; i < bars - 1; i++) {
const uint32_t prevPulses = geigerData.getPreviousPulses(offset,
samplesPerBar);
const float uSph = geigerData.toMicroSievertPerHour(prevPulses,
samplesPerBar);
offset += samplesPerBar;
uint16_t barHeight = 1 + (int) (uSph / uSphPerPixel);
if (barHeight > 40)
barHeight = 40;
u8g2.drawVLine(127 - i, 63 - barHeight, barHeight);
}
u8g2.sendBuffer();
}