ultralytics =========== [Ultralytics][1] creates cutting-edge, state-of-the-art (SOTA) YOLO models built on years of foundational research in computer vision and AI. > Models can be downloaded from [here][2]. ```bash $ docker run --rm -it --ipc=host ultralytics/ultralytics:latest-arm64 python >>> from ultralytics import YOLO >>> model = YOLO("yolo11n.pt", save_txt=True) >>> print(model.names) {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', ...} >>> results = model("https://ultralytics.com/images/bus.jpg") >>> for r in results: print(r.boxes.xywh) tensor([[400.0137, 478.8882, 792.3618, 499.0482], [740.4135, 636.7728, 138.7925, 483.8793], [143.3527, 651.8801, 191.8959, 504.6299], [283.7633, 634.5621, 121.4087, 451.7472], [ 34.4536, 714.2138, 68.8638, 316.2908]]) ``` ```bash $ docker run --rm -it --ipc=host ultralytics/ultralytics:latest-arm64 bash >>> yolo classify predict model=yolo11n-cls.pt source=https://ultralytics.com/images/bus.jpg save_txt=True >>> ls /ultralytics/runs/classify >>> yolo detect predict model=yolo11n.pt source=https://ultralytics.com/images/bus.jpg save_txt=True >>> ls /ultralytics/runs/detect >>> yolo solutions count model=yolo11n.pt classes="[2,5,7]" source=https://basicai-asset.s3.amazonaws.com/www/blogs/yolov8-object-counting/street.mp4 >>> ls /ultralytics/runs/solutions ``` [1]: https://github.com/ultralytics/ultralytics [2]: https://github.com/ultralytics/assets/releases/latest